

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/slacker/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/slacker/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

slacker

[image: slacker]

slacker is a simple RPC framework designed for Clojure and created by
Clojure.

[image: Build Status] [https://travis-ci.org/sunng87/slacker]
[image: Clojars] [https://clojars.org/slacker]
[image: License] [https://github.com/sunng87/slacker/blob/master/LICENSE]

Features

	Fast network infrastructure, fully asynchronous

	Plugable serialization backend, EDN, JSON and Nippy are built-in.

	Transparent and non-invasive API. Calling remote just like local invocation.

	Extensible server and client with interceptor framework.

	Flexible cluster with Zookeeper (moved to slacker-cluster [https://github.com/sunng87/slacker-cluster])

Examples

A pair of example server/client can be found under “examples”, you
can run the examples by lein run-example-server and
lein run-example-client. The example client will print out various
outputs from the server as well as a RuntimeException: “Expected exception.”
This exception is part of the example - not a genuine error in the slacker
source code.

Usage

Leiningen

[image: latest version on clojars] [https://clojars.org/slacker/slacker]

	Stable: 0.15.x

	Development: 0.16.0-SNAPSHOT

Basic Usage

Slacker will expose all your public functions under a given namespace.

(ns slapi)
(defn timestamp
 "return server time in milliseconds"
 []
 (System/currentTimeMillis))

;; ...more functions

To expose slapi from port 2104, use:

(use 'slacker.server)
(start-slacker-server [(the-ns 'slapi)] 2104)

Multiple namespaces can be exposed by appending them to the vector

You can also add option :threads 50 to configure the size of server
thread pool.

On the client side, You can use defn-remote to create facade one by
one. Remember to add remote namespace here as facade name,
slapi/timestamp, eg. Otherwise, the name of current namespace will
be treated as remote namespace.

(use 'slacker.client)
(def sc (slackerc "localhost:2104"))
(defn-remote sc slapi/timestamp)
(timestamp)

Also the use-remote function is convenience for importing all functions
under a remote namespace. (Note that use-remote uses inspection
calls to fetch remote functions, so network is required.)

(use-remote 'sc 'slapi)
(timestamp)

By checking the metadata of timestamp, you can get some useful
information:

(slacker-meta timestamp)
=> {:slacker-remote-name "timestamp", :slacker-remote-fn true,
:slacker-client #<SlackerClient
slacker.client.common.SlackerClient@575752>, :slacker-remote-ns
"slapi" :arglists ([]), :name timestamp
:doc "return server time in milliseconds"}

Advanced Usage

Options in defn-remote

You can specify the remote function name when there are conflicts in
current namespace.

(defn-remote sc remote-time
 :remote-ns "slapi"
 :remote-name "timestamp")

If you add an :async? flag to defn-remote, then the facade will be
asynchronous which returns a promise when you call it. You should
deref it by yourself to get the return value.

(defn-remote sc slapi/timestamp :async? true)
@(timestamp)

You can also assign a callback (fn [error result]) for an
asynchronous facade.

(defn-remote sc slapi/timestamp :callback #(println %2))
(timestamp)

The callback accepts two arguments

	error

	result

You need to check (nil? error) because reading the result. Also note
that doing blocking tasks in callback function could ruin system
performance.

Serialiation

Slacker provides plugable serialization support. From 0.13, Slacker
uses Clojure EDN as default serializer, because it doesn’t introduce
in additional dependencies. Also Slacker provides built-in support for
cheshire (json) [https://github.com/dakrone/cheshire] and
nippy [https://github.com/ptaoussanis/nippy]. Personally I
recommend you to use :nippy in real applications because it’s
fast and compact.

JSON Serialization

JSON is a text based format which is more friendly to
human beings. It may be useful for debugging, or communicating with
external applications. In order to use JSON, be sure to include any
version of cheshire in your classpath, because Slacker doesn’t depend
on it at compile time.

Configure slacker client to use JSON:

(def sc (slackerc "localhost:2104" :content-type :json))

One thing you should note is the representation of keyword in
JSON. Keywords and strings are both encoded as JSON string in
transport. But while decoding, all map keys will be decoded to
keyword, and all other strings will be decoded to clojure string.

EDN Serialization

From slacker 0.4, clojure pr/read is supported. And then in 0.13, EDN
becomes default serialization. You can just set content-type as
:clj. clojure pr/read has full support on clojure data structures
and also easy for debugging. However, it’s much slower and verbose
than binary format, so you’d better not use it if you have critical
performance requirements.

Nippy Serialization

Slacker 0.13 and above has full support for
nippy [https://github.com/ptaoussanis/nippy] serialization. Remember
to add nippy into your classpath and set the content-type as :nippy
to use it. Nippy has excellent support for custom types, you can find
detailed information on its page.

Middleware

To add custom functions on server and client, you can define custom
interceptors before or after function called.

(definterceptor logging-interceptor
 :before (fn [req] (println (str "calling: " (:fname req))) req))

(start-slacker-server (the-ns 'slapi) 2104
 :interceptors (interceptors logging-interceptor))

For more information about using interceptors and creating your own
interceptors, query the wiki
page [https://github.com/sunng87/slacker/wiki/Interceptors].

Here we have two typical demo middlewares:

	The metrics middleware [https://github.com/sunng87/slacker-metrics]
integrates metrics-clojure [https://github.com/sjl/metrics-clojure]
into slacker server.

	The htrace middleware [https://github.com/sunng87/slacker-htrace]
enables htrace distributed tracing on both server and client side.

Slacker on HTTP

From 0.4, slacker can be configured to run on HTTP protocol. To
enable HTTP transport, just add a :http option to your slacker
server:

(start-slacker-server ...
 :http 4104)

The HTTP url pattern is
http://localhost:4104/namespace/function-name.format. Arguments
are encoded in format, and posted to server via HTTP body. If you
have multiple arguments, you should put them into a clojure vector
(for clj format) or javascript array (for json format).

See a curl example:

$ curl -d "[5]" http://localhost:4104/slapi/rand-ints.clj
(38945142 1413770549 1361247669 1899499977 1281637740)

Note that you can only use json or clj as format.

Slacker as a Ring App

You can also use slacker as a ring app with
slacker.server/slacker-ring-app. The ring app is fully compatible
with ring spec. So it could be deployed on any ring adapter.

(use 'slacker.server)
(use 'ring.adapter.jetty)

(run-jetty (slacker-ring-app (the-ns 'slapi)) {:port 8080})

The url pattern of this ring app is same as slacker’s built-in http
module.

Custom client on function call

One issue with previous version of slacker is you have to define a
remote function with a slacker client, then call this function with
that client always. This is inflexible.

From 0.10.3, we added a macro with-slackerc to isolate local
function facade and a specific client. You can call the function with
any slacker client.

;; conn0 and conn1 are two slacker clients

(defn-remote conn0 timestamp)

;; call the function with conn0
(timestamp)

;; call the function with conn1
(with-slackerc conn1
 (timestamp))

Note that you have ensure that the function you call is also available
to the client. Otherwise, there will be a not-found exception
raised.

API Documentation

API docs [http://sunng.info/slacker/]

Performance

To test performance, just start an example server with lein run -m slacker.example.server.

Then run the performance test script:
lein exec -p scripts/performance-test.clj 200000 50. This will run
200,000 calls with 50 threads.

Tested on my working desktop (DELL optiplex 760, Intel(R) Core(TM)2
Duo CPU E7400 @ 2.80GHz, 8G memory), without any special JVM optimization.
200,000 calls with 50 threads is completed in 21923.806054
msecs, which means slacker could handle more than 9000 calls per
second on this machine.

Change logs

See wiki page [https://github.com/sunng87/slacker/wiki/VersionHistory]

License

Copyright (C) 2011-2017 Sun Ning

Distributed under the Eclipse Public License, the same as Clojure.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/ajax-loader.gif

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

